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Within the last 5 years, investigations carried out in several 
laboratories have begun to unravel the complexities of the fas­
cinating sequence of reactions by which branched-chain, poly-
oxygenated fatty acid metabolities such as macrolide2 and poly-
ether3 antibiotics are biosynthesized. For example, incorporation 
of [l-1802,l-13C]propionate and analysis by high-field 13C NMR 
has established the origin of the oxygen atoms of erythromycin 
A (la, Chart I) and supported the conclusion that the oxygenation 
level eventually observed at each site in the parent aglycone, 
6-deoxyerythronolide B (lb), is established during the process of 
carbon-chain elongation.4 Specifically, the four secondary hy-
droxyl or ether functions of the macrolide, independent of their 
individual D (C-13) or L (C-3, -5, and -11) configuration, each 
bear excess oxygen isotope derived from the carboxyl oxygens of 
the propionate precursor. Similar studies have also been reported 
for the polyether antibiotics monensin A (2)5 and lasalocid A (3).6 

The fact that the structural and stereochemical features of the 
vast majority of macrolides can be fitted to a single configurational 
model7,8 has emphasized the generality of the biosynthetic results 
obtained to date. An analogous set of stereochemical prototypes 
has recently been described for polyether antibiotics.8'9 We have 
now examined the biosynthesis of the avermectins (4), a group 
of macrolide metabolites with potent antiparasitic activity10 whose 
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Chart I 

structures are not simply reconciled with any of the above ste­
reochemical models. Our results are reported below. 

Avermectins, and the closely related milbemycin antibiotics 
(5),11 display a novel combination of several structural features. 
In addition to a 16-membered lactone, there is a characteristic 
spiroketal (C-17-25), a feature common to many polyethers, while 
the cyclohexene ring corresponding to C-2-7 is a typical example 
of a nonaromatic, alicyclic polyketide. In order to determine the 
origin of the avermectin carbon skeleton, we have carried out 
incorporations of [l-13C]acetate and [l-13C]propionate using 
growing cultures of Streptomyces avermitilis 5192 and have 
analyzed the isolated and purified avermectins Ala (4a), A23 (4b), 
B l a (4c), and B2a (4d) by 62.9-MHz 13C NMR. The observed 
distribution of label in each metabolite was in accord with the 
expected derivation of 4 from seven acetates and five propionates, 
as illustrated in Scheme I. The sec-butyl substituent in 4 was 

(11) Mishima, H.; Kurabayashi, M.; Tamura, C; Sato, S.; Kuwano, H.; 
Saito, A. Tetrahedron Lett. 1975, 711. Takiguchi, Y.; Mishima, H.; Okuda, 
M.; Terao, M.; Aoki, A.; Fukuda, R. J. Antibiot. 1980, 33, 1120. 
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Table I. Incorporation of [l-1 802 , l- ! 3C]Acetate and 
[l-1802,l-13C]Propionate into Avermectins 

not labeled by either precursor, consistent with the previously 
established role of L-isoleucine as the precursor of the starter unit 
of this series of avermectins.12 

With the basic building blocks of the avermectin aglycone firmly 
established, we turned our attention to the origin of the oxygen 
atoms of these metabolites. To this end, sodium [1-18O2J-
13C]propionate13 (125 mg), diluted with an equal quantity of 
unlabeled sodium propionate, was adminstered in lots of 25.0 and 
6.25 mg at 48 and 72 h, respectively, to each of eight flasks 
containing 20 mL of S. avermitilis 5192 growing in a complex 
medium. After an additional 96 h at 28 0C (220 rpm), the 
contents of the flasks were pooled and centrifuged, and the av­
ermectins were extracted from the cells and purified by established 
procedures.10,14 13C NMR analysis of the isotopically shifted 
resonances4-6,15 revealed the presence of excess oxygen-18 at C-7 
and C-13 in all four avermectins examined, while avermectins A23 

and B2a each bore oxygen isotope at C-23 as well. (Scheme II, 
Table I) Analogous incorporation of sodium [1-18O2J-13C]-
acetate16 resulted in 18O labeling at C-I, -5, -17, and -19, on the 
basis of the observation of characteristic 18O-13C isotope shifts 
in the spectra of each of the four separately analyzed avermectins. 
By contrast, only a single unshifted peak corresponding to the 
spiroketal carbon, C-21, was observed in each sample. 

The pattern of oxygen-18 labeling in the avermectins is thus 
fully consistent with the results of earlier studies of macrolide and 
polyether antibiotic biosynthesis.4-6 Moreover, several noteworthy 
conclusions emerge from the present results: (1) The methyl and 
ether substituents at C-12 and -13 of 4 are present in an erythro 
relationship, in contrast to the prevalent threo pattern characteristic 
of methyl/hydroxyl substituents attached to adjacent biogenetic 
units in erythromycin (C-2,3; -4,5; -10,11; and -12,13) and 
monensin (C-2,3; -4,5; and -6,7). The fact that C-13 of the 
avermectins is nonetheless derived from the propionate precursor 
indicates that the oxygen labeling results are independent of not 
only the absolute (D or L) but also the relative (erythro or threo) 
configuration at any given site.17 (2) The absence of oxygen-18 
label at C-21 suggests that the spiroketal has been generated by 

(12) The isopropyl side chain which characterizes the b components of 410 

was similarly shown to be derived from L-valine. Albers-Schonberg, G.; 
Douglas, A. W.; Goegelman, R. T.; Kaplan, L.; Kempf, A.; Tunac, J. B., 
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(16) 73.4% 18O2
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a Bruker WM 250, 62.9 MHz; spectral width 12 000 Hz; 64 K 
points; quadrature detection; 55° pulse; repetition rate 2.7 s; 
resolution enhancement by Lorentz-Gauss multiplication,4'5 - 1 . 5 -
Hz line broadening, 0.4 Gaussian multiplier; 0.006 ppm/data point. 
b XiQHQ i s o t 0 p e shift, +0.006 ppm. c Average 13C enrichment 
2%. d Average '3C enrichment 3%. e Uncorrected for contribu­
tion of natural abundance 13C to 13C16O peak; ±5. f 13C18O2 

peak due to excess intramolecular multiple labeling by 90% acetate 
precursor. * These assignments may be reversed. h Signal ob­
scured by overlap with other peaks. 

an unexceptional ketalization of a C-21 carbonyl with secondary 
hydroxyl groups at C-17 and C-25. Earlier studies of monensin 
biosynthesis,5 on the other hand, have indicated that the C-9 
spiroketal of the polyether is formed by intramolecular alkylation 
of a hemiketal initially generated by attack of the C-5 hydroxyl 
at the C-9 carbonyl carbon. (3) The fact that the C-7 tertiary 
hydroxyl group in 4 retains the carbonyl oxygen of the corre­
sponding propionate precursor strongly implies that the C-2,7 bond 
of the cyclohexene ring has been formed by a simple aldol con­
densation, thereby ruling out alternative mechanisms involving 
electrophilic cyclization of polyolefinic intermediates. It should 
be noted that little is known at present about the mechanisms by 
which cyclic saturated, as distinguished from aromatic, polyketides 
are generated. In the present case, it is not yet possible to specify 
whether cyclohexene ring formation precedes or follows lacton-
ization. (4) The presence of priopionate-derived oxygen at C-13 
of the avermectins rules out the possibility that these metabolites 
are biosynthesized by late-stage oxidation of a milbemycin or any 
analogously reduced precursor. Instead the observed labeling at 
C-13 implies that the biosyntheses of 4 and 5 diverge during the 
stage of carbon-chain elongation, with milbemycin biosynthesis 
requiring an additional two steps for dehydration and reduction 
prior to condensation with the malonate unit corresponding to C-9 
and -10. Interestingly, the configuration of the C-12 methyl in 
both the avermectins and in milbemycins is D, in spite of the 
different mechanisms by which these centers are apparently in­
troduced. A similar phenomenon is frequently observed among 
the polyether antibiotics.8 In the latter cases, however, the cor-
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responding methyl groups most often have the L configuration. 
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The total synthesis of naturally occurring anthracyclines and 
related analogue structures has been the subject of intense study 
since 1970, especially efforts directed toward preparation of the 
aglycones daunomycinone (1) and adriamycinone (2), which are 

1,R=R1 = H;R2=OH 
2, R = OHjR1 = H; R2 = OH 
3, R = H; R1 = daunosamine; R2 = OH 
4,R = OH; R1 = daunosamine; R2 = OH 
5, R = R1 = R2 = H 
6, R = OH; R1 = R 2 = H 

components of the clinically useful antitumor agents daunorubicin 
(3) and adriamycin (4)P There remains, however, the need for 
synthetic routes that incorporate the oxygen function at C-7 at 
an early stage, since the existing methodology for this function-
alization is inadequate especially with regard to scaleup to 
preparative levels.3,4 It is, furthermore, desirable that these routes 
be inherently flexible permitting preparation of analogue structures 
differing in the substitution pattern in the anthraquinone nucleus.4 

We have previously reported preliminary studies that defined 
the elements of a solution that meets the aforementioned criteria.5 

In the present paper, we describe the completion of our studies 
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a Reagents: (a) Ac2O, 70-80 °C, 16 h; (b) CH2=C(OEt)2 

(4 equiv), Et2O, hv (450-W Hanovia medium-pressure Hg lamp), 
room temperature, 40-48 h; (c) LiOEt (1 equiv), THF, room 
temperature, 1 h; (d) A (185-190 0C), mesitylene, 1.5 h; 
(e) NaOEt (catalyst), O2, EtOH, room temperature, 10 min. 
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a Reagents: (a) SbF5 (10 equiv)-HF (100 equiv), CH2Cl2, 
- 7 8 0C, 10 min; (b) anhydrous NH4NO3 (5 equiv), (CF3CO)2O 
(20 equiv), CH2Cl2, room temperature, 1 h; (c) H2, Pd-C, EtOAc; 
(d) NaNO2, H2SO4, H2O then Et2NOH; (e) BH3-THF (8 equiv), 
THF, 0 0C, 0.2 h; (f) AgOSO2CF3 (3 equiv), ClCH2OCH3 (3 equiv), 
CH2Q2 , room temperature, 0.5 h; (g) LDA (10 equiv), O2 , THF, 
- 7 8 0C then (EtO)3P (2 equiv),-78 "C, 2 h; (h) 0.1% KOH, 
EtOH-H2O (2:1), reflux, 0.5 h; (i) EtSH (3 equiv), l,l'-carbonyl-
diimidazole (1.5 equiv), Mg(OEt)2 (catalyst), DMF, room 
temperature, 16 h; (j) LiCu(CH3), (25 equiv), Et2O-THF, 0 0C, 
3 h; (k) CF3COOH, room temperature, 4 h;then CH3OH, reflux, 
1 h; (1) LiCu(CH2OCH2PhOCH3), (25 equiv), THF, 0 0C, 3 h. 

in this area which have culminated in the development of a highly 
flexible route to 1, 2, and related structures such as the potentially 
significant 6-deoxy series of aglycones 5 and 6. The derived 
glycosides of 5 and 6, along with their 11-deoxy counterparts, may 
possess reduced dose-dependent cardiotoxicity, which is a major 
problem associated with the clinical application of 3 and 4.6,7 

(6) Chlewbowski, R. T. West. J. Med 1979, 131, 364 and references 
therein. 
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